Some (and Only Some!) Aspects of FAME Data Analysis

Marc A. Murison
Astronomical Applications Department
U.S. Naval Observatory

November 8, 1999

FAME Spacecraft, Shield, and Instrument

► Hipparcos Attitude Corrections

The FAME Instrument Housing

The FAME Instrument

Focal Plane Assembly (side view)

A-Astrometric NDa - Neutral Density Type A P-Photometric NDb - Neutral Density Type B

FAME Observation Geometry

Radiation pressure on the sun shield drives the precession

Pause...

- ► If you get the sense that this is a complicated system, then you are right
- ► However, we believe all the problems are treatable
 - you just have to be careful and thorough

FAME: What's it all about?

- ► It's all about me!
- ▶ No, it's all about errors!
- No, it's all about systematic errors!
 - Least squares fit (nonlinear) of observables to model parameters
 - Must model (and remove from data) all perturbations that affect the observables and are important
 - Known physical mechanisms model parameters
 - Unaccounted-for mechanisms bias parameters
 - Fourier series, polynomials, etc.

- ► FAME Observables
 - Scan-direction timing
 - star drops off end of CCD
 - precision ~ 0.5 mas
 - Cross-scan position
 - precision ~ 5 mas

Perturbations of the Observables

- Fundamental goal: accurately connect the observables to positions (stars) on the sky
- Perturbations that affect the connection infiltrate via two paths:
 - Optical path
 - optical surface errors, misalignments, etc.
 - temperature gradient variations
 - Mechanical platform
 - CCDs
 - focal plane mounting
 - optical bench
 - instrument mounting
 - temperature gradient variations
 - spacecraft rotation
- These perturbations that affect the connection fall into three broad categories:
 - Spacecraft rotation (i.e., spin dynamics)
 - Focal plane assembly
 - Instrument optics

Perturbations — Spin Dynamics

- ► Fuel sloshing
- Earth radiation pressure
 - visible
 - infrared
 - variability due to weather
 - complicated torques
 - spacecraft not protected by shield
 - optical ports
- Variability of solar "constant"
 - variation ~ 0.1 percent
 - T ~ days
 - some evidence for variations on the order of minutes
- Shield & flattop albedos
 - variable over time as materials age
 - spatial inhomogeneities
- ► Eclipses

Perturbations — Spin Dynamics (continued)

- Variations in shield angle
 - nonuniform in circumference
 - slow variation over time
 - fast variation flapping (eclipses)
- Axis of shield misaligned with spacecraft spin axis
- Geotail particle bursts
 - "wind" gusts
 - potentials across spacecraft surfaces → currents → magnetic torques
 - caused Echo spinup
- Circulation of Sun around rotating frame stationary point
- Variation of solar radiation pressure as spacecraft orbits around the Earth
- Gravity gradient spin modulation
- ► Magnetic torques

Perturbations — Spin Dynamics (continued)

- ► Magnetopause crossings
 - rare
 - short duration (~15 min) exposure to solar wind

Solar Irradiance During July 1, 1996
SoHO/VIRGO 1-minute data

► Note the real power at all frequencies

Solar irradiance fluctuation effects on spacecraft attitude

- Orientation changes due to irradiance fluctuations
 - fast angle (θ) and precession angle (φ) changes are opposite in sign
 - spin parallel to symmetry axis (Ω_z) is conserved

 Cross-scan and sun angle (rotation of CCD on plane of sky) perturbations as a function of time

Cross-Scan and Sun Angle Fluctuations

Simulated Observations (continued)

► Single-port timing fluctuations

Unconstrained Timing Error due to Irradiance Fluctuations

Simulated Observations (continued)

► Two-port timing fluctuations

Constrained Timing Error due to Irradiance Fluctuations

Perturbations — Focal Plane Assembly

- ► CCD mountings
 - Misalignments (rotation, tilting)
 - Temperature gradient variations
- ► CCD imperfections
 - columns not straight
 - potato chipping
 - how well do we know that last row?
- ► FPA misalignment

Perturbations — Instrument Optics

- ► All optical elements:
 - Aberrations
 - Classical
 - Diffraction (also classical, but not as well known)
 - Defocus
 - Static misalignments
 - Manufacturing errors
 - Baggage handling gorillas
 - Launch vibration
 - Time-variable misalignments
 - Temperature gradient variations
- ► (Don't forget the FPA window)

Outline of FAME Data Reduction

Each known significant perturbation mechanism will have to be modeled, including both the known physics AND bias terms:

$$\varphi(t) = F\left(t; \vec{\lambda}\right) + \sum_{m=0}^{N} A_m P_m(t)$$
physics model bias parameters parameters

 Goal of least squares: minimize a merit function, usually chi-squared,

$$\chi^2 = \sum_{i=1}^N \frac{1}{\sigma_i^2} \left[\tilde{\varphi}(t_i) - \varphi(t_i) \right]^2$$

- Taking partial derivatives of χ² wrt the parameters yields the normal equations, which can be solved for the best-fit parameter values
- ► (Actually, we perform a nonlinear least squares analysis, which requires iteration, but the basic principle is the same)

Outline of FAME Data Reduction (continued)

- FAME data reduction will be accomplished in three stages:
 - Observing spiral reduction
 - Goal: model of spacecraft rotation
 - Timescale: several rotations to perhaps a day or two
 - Global fit
 - Goal: tie together the observing spirals to yield a single, global, model of the spacecraft rotation
 - Timescale: >3 months
 - Astrometric parameter determination
 - Goal: astrometric catalog
 - Timescale: mission
 - Iterate (if necessary)